Category Archives: Video Showcase

Education Wonderland: STEM for All Video Showcase

​By Sarah Hampton

I wish there was an extra planning block built into every teacher’s day for locating quality, relevant resources. Educators and researchers are out there doing amazing things that I rarely hear about through the grapevine. Yet, when I spend a bit of time down rabbit holes on the internet, I stumble across exciting and innovative practices like STEP: Science through Technology Enhanced Play in which young students pretend to be bees and watch their bees interact on screen while an XBOX Kinect sensor bar maps their movements. If you have had similar challenges finding resources, then I have GREAT NEWS for you! Researchers funded by the National Science Foundation have created three-minute videos of some of the best things happening in STEM education in their projects and share them in a showcase. I have watched most from last year’s showcase, and I was surprised to see how many were free, easily implementable, and relevant across all disciplines–even those not traditionally considered to be under the STEM umbrella such as geography. You can also filter the videos by subject or grade level to find ones most helpful to your classroom.

As a science teacher, there are several hands-on activities that easily correlate to the content. As a math teacher, meaningful, engaging opportunities are harder to find. That’s why I was thrilled when I saw this video on teaching Algebra through coding using Bootstrap. The connections to Cartesian coordinates, the distance formula, and functions are tangible as students create their own video games. I have already proposed this idea to another math teacher and tech teacher at my school and they have responded with enthusiasm and buy in. We are hoping to meet over the summer to work through the free curriculum ourselves with intent to implement it through the eighth grade technology class next year.

My trip down this particular rabbit hole felt so much like Wonderland that I am counting down the days until the 2017 Stem for All Video Showcase: Research and Design for Impact funded by NSF beginning May 15. I hope to find you there. More importantly, I hope you find resources to implement in your school there. This is an exciting time to be in education! Check out the showcase and find out why!

Picture

​Students pretend to be bees in STEP.  STEP uses OpenPTrack, an open source platform for sensing position and movement of large groups of people.  


Students write basic code to program their own video games in Bootstrap as a means of learning algebra.

2016 NSF Video Showcase: Broadening Participation

 

By Pati Ruiz

The NSF 2016 Video Showcase: Advancing STEM Learning For All featured 65 videos under the “Broadening Participation” keyword. This topic is an important one for those of us who work in the classroom. I learned through the Cyberlearning 2016 conference that the NSF established the Broadening Participation in Computing Alliance Program between 2006 and 2009 to address issues of engagement and education in computing and computationally-intensive disciplines across the K-20 education landscape.

One underrepresented group discussed in the NSF video showcase was students with diagnosed learning differences. Two of the videos on this topic were very interesting to me – these were Diverse Learning Technologies: Helping students with LD, ADHD, and ASD reach their full potential in STEM and Accessible PhET Simulations for Diverse Learners. In order to learn more about working with diverse learners, I spoke with Amar Abbott, a High Tech Center Access Specialist and faculty member at Taft College. Here is our conversation:

Question: You watched the Diverse Learning Technologies: Helping students with LD, ADHD, and ASD reach their full potential in STEM and Accessible PhET Simulations for Diverse Learners videos from the 2016 NSF Video Showcase. What did you find interesting about them?

Amar Abbott: I thought that they were very informative and I especially liked that all of the videos had closed captioning embedded. This makes them accessible to a wider audience. Also, I learned a lot about the technologies that are being developed for helping students with learning differences.

Question: How might these videos inform your practice?

Amar Abbott: These videos have helped me think more deeply about cognitive load and helping students and teachers monitor learning. One question that came up for me is: If a tool provides some support for the cognition of the student, what can the community [around the student(s)] also do to help support cognitive learning? In addition, I would also like to learn more about the situative and social supports that might help students.

Question: What will you do with what you learned from these videos?

Amar Abbott: I appreciated the introduction to Landmark College, their resources, and research group there; it’s a great model. Their focus on UDL is especially excellent because their work stems from direct experience. I am going to try to visit Landmark and hopefully develop long-term relationships with the researchers and students there.

As for the accessible PhET Simulations for Diverse Learners project video, I learned a great deal about what affordances learners need for activities like simulations. The video was to the point, and I like that it highlighted a blind student working with the PhET Simulations. Projects like these puts accessibility in the forefront and that helps all learners.

It was great to hear Amar’s thoughts, and as a teacher, I will be interested in following both of these projects. I am especially interested in what the University of Colorado team discovers about how simulations “are shaped by sociocultural norms of science, [and] can also be used to change the traditional norms of how students engage in the classroom.” This work will be helpful for everyone interested in broadening participation and engaging all learners in STEM topics.

A Cyberlearning Project looking at Collaboration

By Judi Fusco

Our last post discussed embodied learning and Cyberlearning. Cyberlearning is many different things; on the CIRCL site, we have an overview of Cyberlearning. In this post, we’ll look at another example: a new Cyberlearning project developing technology that may be able to help support teachers and the collaborative learning process. 

It can be difficult to understand what is happening during collaborative work in a classroom when there are multiple groups of students and just one teacher. In a previous post we discussed how it’s hard for an administrator to walk into a classroom and figure out what is happening when students are collaborating because it’s hard to walk up to a group and understand instantly what they are doing. It’s also hard for teachers because they can’t be in all of the groups at the same time. Of course, teachers wish they could be a fly on the wall in each group so that they could ensure that each group is staying on-task and learning, but that’s impossible. Or is it?

At the end of that previous post, I asked if cyberlearning researchers could help create tools to better understand collaboration. When I did that, I was kind of setting myself up to introduce you to a Cyberlearning researcher, Cynthia D’Angelo. She has a project that may lead to the creation of a new Cyberlearning tool to address the problem that it is impossible for a teacher to be in more than one place at a time. Watch this 2-minute video about Speech-Based Learning Analytics for Collaboration (SBLAC) and see what you think.

Cynthia’s research is still in early stages, but all the practitioners I’ve told about it find it interesting and want it for their classroom. Here’s a little more about the project:

In this project, work is being done to determine if technology that examines certain aspects of speech — such as amount of overlapping speech or prosodic features (like pitch or energy) — can give real-time insights about a group’s collaborative activities. If this could happen, and SBLAC went into classrooms, then teachers could get instant information about certain things occurring in group collaboration even when they weren’t present in that group. 

The proposed technology would require a “box” of some sort to sit with each group to analyze the speech features of the group in real time.  One research question in the project is, “Are non-content based speech features (such as amount of overlapping speech or vocal pitch) reliable indicators for predicting how well a group is collaborating?” Initial results suggest this is promising. (Note, this technology doesn’t analyze the content of the speech from the students, just features of the speech. Hopefully, this helps to preserve student privacy.)

It’s important to support groups during collaboration because sometimes groups aren’t effective or an individual student gets left behind. This work, while it is still in early stages, could potentially help teachers identify groups having problems during collaboration. A teacher would no longer have to guess how a group was working when s/he wasn’t present and could target the groups having difficulties to help them improve.

If you want to learn more about the project, watch Cynthia’s 3-minute video shared at the NSF 2016 Video showcase: Advancing STEM Learning for All.  Or you can read the NSF award abstract. Stay tuned, as we’ll have more about this project from two teachers who are working with Cynthia on SBLAC this summer. 

SBLAC really requires teachers and researchers to work together on this hard problem about collaboration as it tries to create new tools to help in the classroom. What do you think of the idea? What do you think is hard or important about collaboration? What kind of feedback would you want on the groups in your classroom. Could SBLAC help administrators understand collaboration? Going forward, we’ll talk more about collaboration and collaborative learning, so feel free to leave questions or comments about collaboration, too.

2016 NSF Video Showcase: A Teacher’s Perspective on Embodied Design

Picture

By Pati Ruiz

NSF recently hosted the Advancing STEM Learning for All 2016 Video Showcase. The showcase included 156 videos of innovative work being done in the STEM fields across the country. I served as one of 35 facilitators for the 2016 showcase, which means that I reviewed and commented on the videos, and used a rubric to vote for best videos. The videos from the 2016 showcase (as well as the 2015 showcase) are all publicly available for anyone to view. They can be filtered by several categories, such as keyword, age/grade level, and state. As a K12 educator, I found the age/grade level filter especially helpful as I tried to find projects related to the work that I do in 9-12 education.

One topic that blew my mind was the work being done around embodied design. Embodied learning designs set up the conditions for learners to engage their body in learning activities through interactive learning environments and whole-body interactive simulations (Lindgren, Tscholl, Wang, & Johnson, 2016). In a recent study of middle school students, Lindgren, and colleagues (2016) found that enacting physics concepts and experiencing these critical ideas in an immersive, whole-body interactive simulation led to significant learning gains, higher levels of engagement, and more positive attitudes towards science when compared to viewing a desktop version of the same simulation. One of the researchers behind this study, Robb Lindgren, submitted this video to the showcase: Gesture Augmented Simulations for Supporting Explanations. Other examples of embodied learning include a video about Advancing New Science Learning and Inquiry Experiences via Custom-Designed Wearable On-Body Sensing and Visualization and this one about VEnvI: Learning Computational Thinking Through Creative Movement.

Wanting to learn more, I went to circlcenter.org where I found the DIP: Developing Crosscutting Concepts in STEM with Simulation and Embodied Learning project and the Promoting Learning through Annotation of Embodiment (PLAE) project. I also found more information on  VEnvI: Exploring Grounded Embodied Pedagogy in Support of Computational Thinking.  As a teacher, I appreciate projects with content and ideas that are immediately applicable in the classroom. For example, VEnvI software is available for download and use in classrooms; the team is currently seeking funding for wider dissemination to teachers and students. Their software allows students to program a virtual character to move in realistic ways. In the showcase video, the VEnvI team shows clips of the dance routines that they have developed to help students learn programming concepts. Students first learn a dance routine and then move to computers where they program their avatar to do the same routine they just learned. You can see students repeating the routines as they write their program, engaging their bodies in the learning activity. I haven’t found the dance routines available to teachers online, but I can clearly see the value of movement to teach basic computer science concepts.

​As a teacher who might benefit from this team’s work, I hope the team gets more funding for the implementation stage of this project. Thinking about other practitioners who might also benefit from the work by this team makes me wonder how the team might disseminate this project to a broader audience. Modifying the VEnvI website to provide a space for teachers to develop and share content for the tool might be one way to do this. Like other projects that are still in the development or concept stages, this project will be very interesting to follow.

I encourage other teachers and practitioners to take a look at the Advancing STEM Learning for All 2016 Video Showcase. Comments and videos are accessible on the Video Showcase site, so go check them out. While you can no longer comment there, you can leave comments here about the videos and we’ll get them to the researchers. Please look for next year’s showcase where you, too, can provide feedback to researchers!

Lindgren, R., Tscholl, M., Wang, S., & Johnson, E. (2016). Enhancing learning and engagement through embodied interaction within a mixed reality simulation.Computers & Education, 95, 174-187.


NSF Video Showcase

Picture

By Judi Fusco

Hey CIRCL Educators, this year and last year, NSF researchers have made short videos to share information about their projects.   I think the videos are great, as they introduce people to different NSF projects, let you know how you can get involved with those projects, and provide inspiration.  

Check out the Cyberlearning Project Videos, vote, and give feedback, if you have time!  (I know it’s that time of the year with end of school and all that is crazy, but these videos are worth watching.) The opportunity to ask a question or give feedback on the videos is open for another few days; the videos will be available indefinitely.  Please share with your colleagues!  If you have a favorite project you’d like to see featured and discussed here on the CIRCL Educators’ blog, let us know!

P.S. Here’s what I’ve watched so far today…

STEM Learning through Infographics
Diverse Learning Technologies
Using Data Visualizations to Empower Informal STEM Educators 
Speech-Based Learning Analytics for Collaboration
A cyber-ensemble of inversion, immersion, collaborative workspaces, query and media-making in learning
and
Project-Based Inquiry Science (PBIS) CyberPD System with 24/7 Online Resources and 3-D Learning Support